Elizabeth River Project Pru & Louis Ryan Resilience Lab RESILIENCE FEATURES + KEY FACTS

The Elizabeth River Project's new Ryan **Resilience Lab** will demonstrate accessible, approachable methods of resilience and sustainability for the homeowner, developer, or small business owner. Sustainability will be a primary focus, with the goal of reaching net zero energy usage. Solar power, rain water collection, and green roofs will be just a few of the highlyvisible strategies employed on the building and site. The site will be a demonstration of emerging practices in coastal environmental resilience including carbon reduction. It will become a showcase for the Elizabeth River Project's signature living shorelines. Please explore the following five resilience goals on display at ERP's new Ryan Resilience Lab:

- Adapt to a Changing Climate
- Absorb Flooding
- Energy and Environmental Resilience
- Cultural Resilience
- Planned Retreat

ÁDAPT TO A CHANGING CLIMATE

111

••• Elevated building with flood-damage resistant structure

- Allows flood waters to advance and recede without compromising the building.
- All mechanical, electrical systems elevated above 100-year floodplain.
- Off-the-shelf materials achieve flood-proofing in an accessible way.

On site energy production

- 80kWh solar panel array with battery backup.
- Net-zero energy use annually.

Floating dock + sunlight permeable gangway

- Inherently resilient will not be affected by rising sea levels.
- Will not impede growth of living shoreline.
- Constructed from fiberglass reinforced composites, which will virtually eliminate chemical contamination in the river.

Healthy interior building design

• Operable windows in every room allow fresh circulating air inside, as well as low-VOC materials contribute to a healthy interior environment.

Storage building on amphibious platform

 Demonstration of practical application of commercially available dock floats

ABSORB FLOODING

Green roof to reduce storm water runoff Cisterns to collect and temporarily store rainwater

- Will be used for site + green roof irrigation
- Possible gray-water re-use in the building

Living Shoreline and site act as a single macroscale raingarden, allowing ~100% of storm water to infiltrate naturally

Individual demonstration rain gardens (front plaza, outdoor classroom) connected to rain barrels

 Pervious paving used at all uncovered parking and drive areas

Retention/restoration of shoreline and green space overall represents a net reduction in hardscape and a net increase in restored wetland and habitat restoration

ENERGY & ENVIRONMENTAL RESILIENCE

···· Passive Design

- Building envelope insulated to far exceed code minimum; contributes to energy savings overall
- "Cool roof" at solar panel locations (non-green roof areas)
- Green walls on southern facades limit solar heat gain during the summer (energy use reduction)
- Green roofs reduce summer heat gain through roof, and reduce heat loss during winter
- Cool hardscape materials (gravel, permeable paving) to reduce heat island effect
- Building orientation along E-W axis to minimize glare and maximize passive solar heating/cooling

Building Systems

- Generate on-site energy with solar panels
- High-efficiency HVAC systems (SEER 20-22)
- Solar hot water heating will augment centralized building water heater
- EV charging stations will encourage EV usage
- Operable windows will increase occupant comfort and reduce energy loading during shoulder seasons
- High-efficiency lighting (LED, daylight harvesting, daylighting strategies overall)

Material Stewardship

- Building constructed from FSC-certified wood to reduce carbon footprint
- Recycled materials used wherever feasible

CULTURAL RESILIENCE

• Teaching Tool

- Partnerships with RISE, ODU, NSU, VIMS for research and site-specific installations.
- Didactic signage throughout site and building will explain various strategies and approaches.
- ERP staff will be a resource for interested citizens (Through various River Star Programs).

Promotes and contributes to a healthy and ecologically sensitive community

- Public park teaching tool that will engage with the community and give people a new way to experience the Elizabeth River.
- Alternative transit encouraged, including bicycle racks and EV charging stations.
- Access to waterways for recreational and educational boating.
- Encourage Colley Avenue to become an "Eco-Corridor", building upon the work of UVA grad students in the "Blue Norfolk" study.
- Art/demonstrations in public realm capture the imagination.

Off-the-shelf components

- Results will be accessible to homeowners, business owners, etc.
- Will provide positive local economic impacts.

First known redevelopment in the urban floodplain in Virginia to:

- Plan intentionally to model for environmental resilience by anticipating obsolescence
- Exclusively use building and site elements designed to do no harm after retreat
- Focus on cost-effective ways for homeowners and businesses to do it themselves
- Teach the design and construction community how to repeat these techniques in order to exponentially increase our region's resilience to coastal flooding and sea level rise

Engineered 30-50-year lifespan

- Ensure that the building can be safely dismantled in the event that the site must be abandoned due to sea level rise.
- Leaving nothing on the site that would do harm to the environment.

Rolling conservation easement along living shoreline

• Ensure that the site will be progressively preserved as sea levels rise

